covariant — covariant, iante [ kovarjɑ̃, jɑ̃t ] adj. • 1932; de co et variant, p. prés. de varier ♦ Math., phys. Composantes covariantes d un vecteur sur une base, projections orthogonales d un vecteur sur cette base. Si la base est orthonormée, les… … Encyclopédie Universelle
Covariant — Définition Les coordonnées d un vecteur ou d un tenseur sont covariantes lorsqu elles sont exprimées par le produit scalaire du vecteur ou du tenseur par les vecteurs de base. ex. Notation Les coordonnées covariantes sont notées avec des indices… … Wikipédia en Français
Covariant — Co*va ri*ant (k? v? r? ant), n. (Higher Alg.) A function involving the coefficients and the variables of a quantic, and such that when the quantic is lineally transformed the same function of the new variables and coefficients shall be equal to… … The Collaborative International Dictionary of English
covariant — /koh vair ee euhnt/, adj. Math. (of one magnitude with respect to another) varying in accordance with a fixed mathematical relationship: The area of a square is covariant with the length of a side. [1850 55; CO + VARIANT] * * * … Universalium
Covariant derivative — In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a… … Wikipedia
Covariant transformation — See also Covariance and contravariance of vectors In physics, a covariant transformation is a rule (specified below), that describes how certain physical entities change under a change of coordinate system. In particular the term is used for… … Wikipedia
Covariant formulation of classical electromagnetism — Electromagnetism Electricity · … Wikipedia
Covariant et contravariant — En algèbre linéaire, multilinéaire ou en géométrie différentielle, les adjectifs covariant et contravariant désignent la manière dont les composantes d une grandeur (vecteur, tenseur) s expriment, suivant qu on utilise la base vectorielle de… … Wikipédia en Français
Covariant classical field theory — In recent years, there has been renewed interest in covariant classical field theory. Here, classical fields are represented by sections of fiber bundles and their dynamics is phrased in the context of a finite dimensional space of fields.… … Wikipedia
Covariant Hamiltonian field theory — Applied to classical field theory, the familiar symplectic Hamiltonian formalism takes the form of instantaneous Hamiltonian formalism on an infinite dimensional phase space, where canonical coordinates are field functions at some instant of time … Wikipedia